Bulk Handling simplified

Bulk Bag Handling System Slashes Carbon Black Inventory

Elastomer manufacturer Kirkhill-TA Co. slashed inventories of carbon black and improved plant cleanliness by replacing a large silo storage system with a bulk bag discharging system. It allowed the company to cut inventory by 90 percent, while preventing carbon black dust from contaminating the plant environment. Cost savings and improvements in efficiency and competitiveness accrued as side benefits.

The bulk handling system is the latest upgrade for this company that began making gaskets, seals and other elastomeric products in 1919 and gradually shifted production from general industrial products to highly-engineered silicone parts for commercial and military aircraft, missiles and even the Space Shuttle.

Carbon black is one of Kirkhill-TA’s main processing materials. Adding carbon black to an elastomer reduces its rate of thermal expansion, thereby enabling it to maintain an airtight seal in high-temperature applications. It can also modify elongation, rigidity and other physical properties, and impart conductivity to prevent static discharge.

As Kirkhill-TA moved from mass production of industrial parts to lower-volume production of aerospace parts, it became unnecessary and costly to maintain carbon black inventories in silos. “With railcars, we had to bring in 300,000 pounds of carbon black pellets at a time,” said Larry Pierce, Esterline’s vice president of technology. “We only received shipments a few times per year, and were tying up close to $250,000 in inventory with each shipment.”

In addition, the city of Brea decided to remove the railroad tracks that...
supplied the plant to expand its park space. "We were the only industrial facility left in the city, and agreed to it," says Pierce. "In return, the city gave us a loan to buy the new bulk off-loading system."

Also, Kirkhill-TA's parent company, Esterline Technologies, put a premium on controlling inventory costs.

Kirkhill-TA had several priorities for its new materials handling system. It had to improve inventory efficiency and keep costs in line. It needed to use as much of the existing infrastructure as possible. Finally, it had to prevent carbon black dust, caused by the friable pellets rubbing against one another, from escaping into the plant or processing equipment.

Carbon black is produced by burning heavy oil or tar to form soot-like particles. When airborne, they can penetrate operating equipment. "Carbon black tends to soak up lube oil," Pierce said. "If it gets into the bearings and rollers, they will wear out prematurely." It can also cause short circuits.

Because carbon black is a petroleum product, California classifies it as a hazardous material. While carbon black ships as 1-3 mm diameter pellets to reduce the likelihood of airborne release, manufacturers must remain vigilant to prevent spills and the cleanup that would follow.

Railcar System Handled Bulk Deliveries

Kirkhill-TA had a significant infrastructure to handle carbon black, with a rail off-loading station, including screw conveyors and bucket conveyors, and two storage silos.

Carbon black pellets flowed from the silos to the company's Banbury mixers two ways: by pneumatic conveyor and, when weight in the silo fell below 50,000 pounds, by large steel totes that hold approximately 2,000 pounds of carbon black. "They are like bulk bags made of steel. We move them by forklift and gravity feed the carbon black into a weighing container with an integrated weigh scale, that sits on a mezzanine above the mixers. When the container and pellets reach the weight required for the recipe, the container's chute opens, discharging the material into the mixer for compounding with elastomers prior to molding into finished seals," Pierce explains.

The pneumatic conveyors are no longer utilized, but the steel totes and weighing system remain as part of the new bulk handling installation.

Bulk Bags Simplify Handling

Bulk bags were a clear choice for receiving carbon black. First, they are available in 1,000- and 2,000-pound sizes, which is large enough to receive bulk discounts. While vendors charge less for bulk railcar shipments, the savings are largely offset by higher rail transportation costs. By switching, Kirkhill-TA would pay only a fraction of a cent per pound more for bulk bag deliveries. Add in the savings from minimizing inventories and eliminating silo maintenance, and the bulk bag system pays for itself.

The bulk bag discharger also improves site cleanliness. First, it moves bulk material handling operations inside the facility, so any accidental leaks are contained within the plant. The discharger also uses dust-tight connections to fully contain carbon black until final addition to the mixer.

Trucks deliver 10 to 12 palletized bulk bags at a time. A forklift raises each bag by its straps and delivers it to a storage site on the mezzanine. When carbon black is needed, the forklift operator attaches the bag straps to a detachable bag lifting frame, then lifts the frame into the cradle on the bulk bag discharger.

The discharger unloads carbon black pellets from the bulk bag into a purpose-built hopper, from which a 15-foot-long, 4.5-inch O.D. flexible screw conveyor transfers the material to a steel tote. At this point, the operation proceeds as it did originally using the steel totes: A forklift transports the tote along the mezzanine to the container above one of the mixers, where it releases its load.

Airtight System Yields Cleaner Plant

The bulk bag discharger is engineered to fully contain the material being unloaded, preventing contamination of the product and plant environment. The bag spout is attached to a Spout-Lock® clamp ring, which forms a sealed
Dust is created as 1-3 mm diameter carbon black pellets rub together.

connection between the clean side of the bag spout and the clean side of a TeleTube® telescoping tube (through which the material is discharged). The tube pneumatically raises the clamp ring, allowing the operator to make a dust-tight connection with the bag spout. The tube then lowers, elongating the bag to fully discharge the pellets. Also promoting full discharge, Flow-Flexer® bag activators — two plates located under the bag — raise and lower opposite bottom edges into a "V" shape, directing material toward the bag spout.

Above the clamp ring, a Power-Cincher® flow-control valve encircles the upper portion of the bag spout to allow retying of partially empty bags. When the bag is empty, the operator actuates the Bag-Vac® dust collector, which generates vacuum within the sealed system, collapsing the empty bag dust-free for retying and removal.

The conveyor encloses a flexible stainless steel screw with specialized geometry to minimize compression of materials like carbon black that tend to compress in conventional conveyors. As the screw rotates, it self-centers within the plastic tube, providing clearance between the screw and tube wall and allowing sufficient space for pellets to flow without damage.

The intake end of the conveyor attaches to the outlet of the hopper. At the discharge end, a 5 hp motor drives the screw as the material passes from the conveyor outlet, through a 6 inch diameter flexible downspout into the steel tote. Being fully enclosed, the conveyor further assures plant cleanliness.

A batch timing control activates the conveyor for a repeatable time interval to fill the tote.

“We reduced inventories of carbon black from 500,000 - 1,000,000 pounds to 50,000 - 100,000 pounds,” Pierce says. “The bulk off-loading system improves efficiency and competitiveness and brings our costs in line.”

What is Carbon Black?

- Carbon black is a material produced by the incomplete combustion of heavy petroleum products such as FCC tar, coal tar, ethylene cracking tar and a small amount from vegetable oil.
- It is a form of amorphous carbon that has a high surface-area-to-volume ratio, although its surface-area-to-volume ratio is low compared to that of activated carbon.

Production

- Two carbon black manufacturing processes — furnace black and thermal black — produce nearly all of the world’s carbon blacks, with the furnace black process being the most common.
- The furnace black process uses heavy aromatic oils as feedstock.
- The thermal black process uses natural gas, consisting primarily of methane or heavy aromatic oils, as feedstock material.

Uses

- 70 percent of carbon black is used in the production of automobile tires. It helps conduct heat away from the tread and belt area of the tire, reducing thermal damage and increasing tire life.
- Carbon black particles are also employed in some radar absorbent materials and in photocopier and laser printer toner.
- About 20 percent of world production goes into belts, hoses and other non-tire rubber goods. The balance is mainly used as a pigment in inks, coatings and plastics.
- While a pure gum vulcanize of styrene-butadiene has a tensile strength of no more than 2.5 MPa, and almost nonexistent abrasion resistance, compounding it with 50 percent of its weight of carbon black improves its tensile strength and wear resistance.

Health Effects

- Short-term exposure to high concentrations of carbon black dust may produce discomfort to the upper respiratory tract, through mechanical irritation.

Source: International Carbon Black Association