CPS Conveyor Products & Solutions
Australia's leading conveyor roller manufacturer adds FRAS composite rollers to their range
Pneumatic conveying of silicon powder for li-ion batteries

The future of lithium-ion (Li-ion) batteries found in laptops, phones, hybrid cars and other applications may be taking shape at a UK start-up.

Nexen Ltd has built a plant at its headquarters in Abingdon, Oxfordshire, to produce a silicon anode it developed that significantly improves the energy density and operating life of Li-ion batteries.

A critical part of producing the silicon anodes involves transferring precise amounts of silicon powder and other ingredients from a bag dump station to a slurry tank for mixing in an aqueous solution, using a dilute-phase, Pneumati-Con vacuum conveying system from Flexicon.

The transfer is dust-free and safe. “Silicon powder is combustible and can be explosive under the right conditions,” says David Bent, production director at Nexen. “Flexicon analysed the powder and developed the pneumatic system for it, including dust control and explosion protection measures.”

Bag dump station contains dust
The first step in transporting the powder is manually emptying bags of silicon powder and additives into the bag dump station mounted on a floor hopper. A bag tray support provides a work surface for the operator to stage, clean and open bags.

A dust collection system integral to the bag dump station draws airborne dust through two cartridge filters, as reverse pulse jets automatically clean the filters and return accumulated dust to the hopper.

Pneumatic conveying system feeds weigh hopper
The powders flow from the bottom outlet of the floor hopper through a pickup adapter into the two-stage pneumatic conveying line.

Left: Silicon powder and additives are manually emptied into the bag dump station and floor hopper. The station includes a bag tray support and dust collection through two cartridge filters. Powders flow from the hopper outlet through a pickup adapter into the pneumatic conveying line.

Below: Powders move from the bag dump station through the pneumatic conveying line to the filter receiver (left) in the main processing area. Fully enclosed system prevents the escape of dust.
The first vertical section rises 90 degrees from the hopper outlet and connects to the second horizontal section, which runs from the silicon unloading area to the main processing area. The receiving hopper empties into a slurry make-up vessel.

A side channel blower downstream of the filter-receiver atop the receiving hopper provides a vacuum that pulls the material through the pneumatic line, improving dust control. The fully enclosed system transfers the silicon powder virtually dust-free. Since the system operates under vacuum, even if the integrity of the enclosed system is unintentionally compromised, the silicon powder will remain within the conveying system.

BUILT FOR STRENGTH, DESIGNED FOR PRODUCTIVITY

Hawk heavy duty feeders

Hawk Brute Force feeders are designed with heavy duty construction and fitted with two out of balance electric motors, bolted directly onto the machine. Custom designed machines can be suspended or base mounted for any application, are all available for capacities up to 4000 TPH, and in sizes from 200mm to 3000mm wide and up to 8000mm long. Hawk feeders can be supplied with support frames, hoppers and frequency inverters for controlling the flow rate, as fully operational packages ready to install and run. All machines are thoroughly reliable and require minimum maintenance.

For complete technical specifications and advice, contact:

7 Lantana Street, Blackburn 3130, Victoria, Australia. PO Box 1029, Blackburn North 3130, Victoria, Australia
Phone: 61 3 9877 7777 Fax: 61 3 9877 8177 Email: info@hawkmachinery.com.au www.hawkmachinery.com.au
Siemens modernises drive system for ore mills in Chile

As one of the world’s biggest copper producers, the Chilean mining company Compañía Minera Doña Inés de Collahuasi SCM based in Las Condes in Chile commissioned Siemens to modernise the drive system of four of its ore mills.

The mine is located in the North of Chile, around 180 kilometres southeast of the port of Iquique. The contract required Siemens to supply complete systems comprising new motors and Flender couplings with torque limiting shear pin, as well as new Sinamics S1.150 cycloconverters with thyristor stacks. Siemens says the new drive systems will give a huge boost to the reliability and consequently also the throughput of the mills. The contract is valued in the double-digit million Euro range.

The modernisation project includes two 8 MW SAG (semi-autogenous) mills and two 1.7 MW ball mills with dual pinion drives. The new drive systems are replacing the existing synchronous motors and direct converters for the SAG mills and the drive systems of the ball mills, which were installed by a different manufacturer. “The standardised system design now offers all the benefits of controllable drives also for the ball mills,” stated Siemens’ publicity.

“When implementing this project, to prevent costly standstill periods and also to minimise risk it was vital for the new motors to fit on the foundations constructed for their predecessors. Also with a view to minimising any risks associated with the conversion, a decision was taken to replace the entire mill automation system with modern technology rather than undertaking the laborious task of adapting the hardware and software.

“The direct converter and the new automation systems were installed in ready-assembled new ‘E-Houses’ which were completely developed, produced and pre-tested in the plant in Santiago/Chile, to be subsequently connected and commissioned on site.

“The location of the mine at an altitude of over 4,200 meters meant that particular care had to be taken with the electrical and thermal dimensioning of components.”